Skip to main content
Ctrl+K
Dive into Deep Learning - Julia - Home Dive into Deep Learning - Julia - Home
  • Dive into Deep Learning - Julia

Preliminaries

  • 1. Data Manipulation
  • 2. Data Preprocessing
  • 3. Linear Algebra
  • 4. Calculus
  • 5. Automatic Differentiation
  • 6. Probability and Statistics

Linear Neural Networks for Regression

  • 7. Linear Regression
  • 8. Concise Implementation of Linear Regression

Linear Neural Networks for Classification

  • 9. The Image Classification Dataset
  • 10. Concise Implementation of Softmax Regression

Multilayer Perceptrons

  • 11. Multilayer Perceptrons
  • 12. Implementation of Multilayer Perceptrons
  • 13. Numerical Stability and Initialization
  • 14. Dropout

Builders’ Guide

  • 15. Parameter Management
  • 16. File I/O
  • 17. GPUs

Recurrent Neural Networks

  • 18. Working with Sequences
  • 19. Concise Implementation of Recurrent Neural Networks

Modern Recurrent Neural Networks

  • 20. Long Short-Term Memory (LSTM)
  • 21. Gated Recurrent Units (GRU)
  • 22. Deep Recurrent Neural Networks
  • Repository
  • Open issue

Index

By Nero Blackstone

© Copyright 2023.